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We introduce a general class of stochastic processes forced by instantaneous random fires �i.e., jumps� that
reset the state variable x to a given value. Since in many physical systems the fire activity is often dependent
on the actual value of the state variable, as in the case of natural fires in ecosystems and firing dynamics in
neuronal activity, the frequency of fire occurrence is assumed to be state dependent. Such dynamics leads to
independent interfire statistics—i.e., to renewal point processes. Various functions relating the frequency of fire
occurrence to x�t� are analyzed and compared. The relation between the probabilistic dynamics of x�t� and the
interfire statistics is derived and some exact probability distribution of both x�t� and the interfire times are
obtained for systems with different degrees of complexity. After studying processes in which the fire activity is
coupled only to a deterministic drift, we also analyze processes forced by either additive or multiplicative
Gaussian white noise.
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I. INTRODUCTION

Models with state-dependent noise have been widely
studied in systems driven by Gaussian noise—that is, in the
case of multiplicative noise �1–7�. On the other hand, the
role of the state dependence for other types of noise is less
clear and only a few studies have been carried out �8,9�.

In the present paper we deal with state-dependent fire
models—i.e., models describing processes with instanta-
neous jumps that reinitialize the state variable to a given
value. These models find multiple applications in different
disciplines that often deal with problems related to renewal
theory �10�—that is, processes in which the interfire or re-
newal times are independent and identically distributed ran-
dom variables. The applications range from analysis of fail-
ure and replacement of components to queuing processes,
such as traffic flow and electronic counter �10,11�, to storage
problems �12� and population dynamics �13�.

Fire models are also largely adopted to describe neural
signal transmission �14–18�, such as the leaky integrate-and-
fire model �18,19�, which assumes the voltage across a nerve
membrane between successive neuron excitations to behave
according to an Ornstein-Uhlenbeck process. When the volt-
age reaches a certain threshold, an excitation occurs, which
resets the voltage to a lower value. The interspike statistics
depends on the dynamics of both the voltage and threshold,
which might not be constant �17� and depend on the actual
value of the voltage. Hence, such dynamics can generate
times of neuron excitations that are points of a state-
dependent renewal process.

Another example of application of state-dependent fire
models leading to a renewal process can be found in the
modeling of disturbances and catastrophic events in ecology
�13�, with applications to fire dynamics in ecosystems
�9,20,21�. Natural fires represent an important determinant of

above-ground biomass, and in some ecosystems they are
considered a necessary component for their preservation
�22�. The occurrence of fires, although random, is at the
same time strongly dependent on the dynamics of the above-
ground biomass, which represents the fuel. Thus, the prob-
ability of fire occurrence typically increases as the above-
ground biomass production grows, while, after a fire, the
biomass is reduced and the fire probability is reduced until
biomass grows again.

One of the main properties characterizing fire processes is
the interarrival time of fires. We introduce an approach to
find the distribution of the time between successive fires that
differs and is mathematically more advantageous than the
more common approach based on finding the first-passage
rates through a threshold �14–16�.

After presenting the general mathematical framework
used to describe the state-dependent fire processes and to
find the interfire statistics �Sec. II�, Secs. III and IV show
applications to not-diffusive and diffusive systems, respec-
tively.

II. MATHEMATICAL MODEL

A simplified way to model processes such as those dis-
cussed before is to describe the system in terms of a single
representative stochastic variable x�t�, the trajectory of which
is perturbed by fires that reset the state of the system to a
given value, hereinafter assumed to be zero without loss of
generality. The dynamics of x�t� between two fires is as-
sumed to be driven by a deterministic component plus a
random forcing: namely, a multiplicative white Gaussian
noise either additive or multiplicative. The fires or renewal
events can be modeled as a Poisson process F�x , t�, with
frequency �, which in general may be time and state
dependent—i.e., �=�(x�t� , t). Using the terminology of re-
newal theory, the function �(x�t� , t) represents the
age-specific failure rate �10�—i.e., the probability that, being
at a time �age� t, a fire is released in the infinitesimal time
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interval t+dt. Accordingly, the equation for x�t� can be writ-
ten as

dx

dt
= f�x� + g�x���t� − F�x,t� , �1�

where f�x� and g�x� are deterministic functions and ��t� is
white Gaussian noise, with ���t��=0 and ���t���s��=2�2��t
−s�, �2 being the noise strength. The system therefore starts
from a given initial value x�0�=x0, evolves along a trajectory
up to a certain time at which a fire is released, and then
restarts from zero. After the first reinitialization, the fires
generate a renewal process, since interfire times are indepen-
dent and identically distributed random variables �10�. Be-
cause of the state dependence of fire occurrence, the distri-
bution of the first-fire times depends on the initial condition
x0 and, unless x0=0, it is different from that of the times
between subsequent fires—that is, when the system restarts
from x�t�=0. This means that the processes generated by
state-dependent fire models are modified renewal processes
when x0�0 and become ordinary renewal processes only
when x0=0 �23�.

When Eq. �1� is interpreted in the Itô sense, the transition
probability distribution function of x�t�, p�x , t�, satisfies the
forward master equation �23–25�

�

�t
p�x,t� = −

�

�x
�f�x�p�x,t�� + �2 �2

�x2 �g2�x�p�x,t��

− ��x,t�p�x,t� + ��x��
�

��z,t�p�z,t�dz , �2�

where � is the domain of x. Equation �2� states that the time
variation of p�x , t� is given by a contribution related to the
drift f�x�, a diffusive term generated by the Gaussian noise, a
term that defines the loss of probability due to the jumps, and
an integral term that represents an injection of mass in x=0
due to the renewal events. This last contribution, which is
simply ��x����t��, where ���t�� is the mean frequency of the
fire occurrences, maintains the area of the probability distri-
bution function �PDF� constant, reintroducing in x=0 the
mass lost through the jumps �i.e., the third term in the right-
hand side �RHS� of Eq. �2��. Equation �2� is solved assuming
the initial condition p�x ,0�=��x−x0� and the integral
��p�x , t�dx is constant in time and equal to 1. In those cases
in which the transient solution of Eq. �2� cannot be found
analytically, we will study, when possible, the stationary so-
lution p�x�, which is the PDF reached by the system in the
long time, when �tp�x , t�=0.

In order to determine analytically the distribution of inter-
fire times, it is useful to introduce a slightly modified version
of Eq. �2�, in which the integral term is eliminated. The
corresponding process is identical to the previous one until
the occurrence of the first fire, after which the trajectory is
not renewed and the process stops. The related PDF, indi-
cated as p��x , t�, satisfies the equation

�

�t
p��x,t� = −

�

�x
�f�x�p��x,t�� + �2 �2

�x2 �g2�x�p��x,t��

− ��x,t�p��x,t� , �3�

with initial condition p��x ,0�=��x−x0�. The solution p��x , t�
loses mass in time at the rate ����x , t�p��x , t�, so that its area
tends to zero as t goes to +�, providing the fraction of tra-
jectories that survive without a fire �i.e., renewal event� up to
time t. Thus, interestingly, the PDF p��x ,	� is related to the
probability that the process x�t� has not experienced a jump
up to time t=	, F�	�, by

F�	� = �
�

p��x,	�dx , �4�

which is commonly referred to as survivor function �10,21�.
From this, it follows that the PDF of the time of first-fire
occurrence, p	�	�, is

p	�	� = −
d

d	
F�	� , �5�

which depends on the initial condition x0. When x0=0, p	�	�
also represents the PDF of the interfire times, since after the
first fire the system always restarts from x�t�=0.

The PDF p	�	� can be evaluated directly from Eq. �3�,
provided that both f�x�p��x ,	� and �x�g�x�2p��x ,	�� go to
zero at the boundaries of �. In fact, integrating both sides
with respect to x over the entire domain yields

p	�	� = −
d

d	
�

�

p��x,	�dx = �
�

��x�p��x,	�dx . �6�

The adoption of Eq. �6� is typically not very useful, since Eq.
�3� is not solvable in the majority of the cases. However,
since the Laplace transform of p��x ,	�, p�

*�u ,	�, is usually
more easily obtained, the survivor function can be also
evaluated as

F�	� = 	p�
*�u,	�	u=0 = 
�

−�

+�

e−uxp��x,	�dx

u=0

. �7�

A first simple example of the use of Eq. �6� can be ob-
tained when � does not depend on x�t�—i.e., �=��t�. In this
case, with the substitution p�= p̃� exp�−�0

	��u�du�, Eq. �3�
becomes

�

�	
p̃��x,	� = −

�

�x
�f�x�p̃��x,	�� + �2 �2

�x2 �g2�x�p̃��x,	�� ,

�8�

the solution of which satisfies the condition ��p̃�dx=1. Thus
Eq. �6� gives

p	�	� = ��	��
�

p̃� exp�− �
0

	

��u�du�dx

= ��	�exp�− �
0

	

��u�du� , �9�

which is, as expected, the interarrival time of the events of a
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Poisson process with time-dependent frequency of event oc-
currence �23�.

In the following we analyze some examples of systems
for which expressions of p	�	� can be found analytically, first
studying processes in which the dynamics between fires is
driven only by a deterministic drift and then also adding a
diffusive term. The fire frequency will be considered to de-
pend only on x�t� and not also to be a direct function of time.

III. PROCESSES WITHOUT DIFFUSION

We start by studying processes described by Eq. �1� with
g�x�=0. Since the fires always reinitialize the system to zero,
for the system to leave x=0 after a renewal event, the con-
dition f�0��0 must also be satisfied. In these cases, the tra-
jectories followed by x�	� between fires are deterministically
defined by a one-to-one relation between 	 and x—i.e., 	
=�x0

x du / f�u�, where 	 is either the time from the beginning of
the process or the time after any given fire or renewal event
�when x0=0�. Therefore, given the assumption that the re-
newal events occur according to a Poisson process, the PDF
of the times between fires can be written as �23�

p	�	� = �„x�	�…exp�− �
0

	

�„x�u�…du� , �10�

which is a function of ��x�, f�x�, and x0. According to the
theory of renewal processes �10�, the age-specific failure rate
is given by the ratio p	�	� /F�	�, which coincides with ��	�.

The same result can also be obtained through Eq. �6�. In
fact, the solution of Eq. �3� when the diffusive term is not
considered is

p��x,	� =
1

f�x�
���

x0

x du

f�u�
− 	�exp
− �

0

	

�„x�t�…dt� ,

�11�

which represents an atom of probability with decreasing
mass moving along the curve 	=�x0

x du / f�u�, x0 being the
initial condition. Substituting this solution into Eq. �6� one
obtains Eq. �10�, which �we recall� represents the PDF of the
time to the occurrences of the first fire for a system starting
from x0 as well as the PDF of interfire times when x0 is equal
to zero.

In the cases with no diffusion and in stationary conditions,
p	�	� can be obtained following two other approaches, the
analysis of which is useful to better understand the properties
of these processes.

�i� Under steady-state conditions �i.e., for x0=0�, p	�	�
can be derived directly from the solution of Eq. �2�, p�x�.
Assuming, without loss of generality, that f�x�
0 when x is
positive, the steady-state PDF satisfies

−
d

dx
�f�x�p�x�� − ��x�p�x� + ��x���� = 0, �12�

the general solution of which reads

p�x� = ��x�
���
f�x�

exp�− �
0

x ��u�
f�u�

du� �x 
 0� , �13�

where ��·� is the Heaviside function and the value of ���,
which is not known a priori, can be obtained imposing
�0

+�p�x�dx=1. To find the relation between p�x� and p	�	�,
we can consider the portions of trajectory between fires as
independent realizations of the same renewal process. In fact,
as shown in Fig. 1, the probability that x
x* corresponds to
the probability of the residual lengths of the trajectories that
last for a time longer that 	* �i.e., forward recurrence time
�10��. Noticing that in stationary conditions the process be-
comes an equilibrium renewal process, according to �10� one
can write

�
x*

+�

p�x�dx = �
	*

+� F�	�
�	�

d	 , �14�

from which

F�	� = �	�p�x�
dx

d	
=

p�x�f�x�
���

. �15�

Substituting into Eq. �13� and using Eq. �5�, Eq. �10� is
readily obtained.

�ii� An alternative interpretations of the process of deter-
ministic fire growth and successive renewals can be given by
assuming that x�t� follows a deterministic trajectory accord-
ing to f�x� up to a random threshold, the value of which is
extracted by a distribution pf�x�. When x reaches such a
threshold, a fire is released and the process starts again until
it reaches a new threshold that is again extracted from the
distribution pf�x� and so on. The distribution of the thresh-
olds can be derived by p	�	� �Eq. �10�� as pf�x�
= p	(x�	�)�d	 /dx�=��x�p�x� / ���, provided that 	=�0

xdu / f�u�.
This implies that the two distributions p�x� and pf�x� coin-
cide when � is constant �i.e., equal to ���� and thus they are
exponential. A similar approach has been used in a simplified
neuronal model �17,18�, where the neuron excitations were
assumed to be released when the voltage across the nerve
membrane reaches random thresholds.

An example of a realization of a state-dependent fire pro-
cess is reported in Fig. 2 summarizing the corresponding

FIG. 1. Schematic example showing the relation between the
area subtended by p�x� and the survivor function �see text for
details�.
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related PDF’s introduced before �e.g., p�x�, pf�x�, and p	�	��.
The system, which is a particular case of those studied in
Sec. III A, is driven by a constant drift �e.g., f�x�=0.1 and
g�x�=0� and has a cubic dependence of the mean fire rate of
fire occurrence �e.g., ��x��x3�.

It is also interesting to note that when the system reaches
a steady state, the jumps towards zero are balanced by the
drift. Hence, in stationary condition �x��x��= �f�x��. Such a
relation can be obtained either by multiplying Eq. �2� to x
and integrating over the x-domain � or directly averaging
Eq. �1� when g�x�=0. It follows that �F�x , t��= �x��x��. In
fact, since the system jumps to zero when a fire is released,
�F�x , t�� represents the average of the product between the
mean rate of fire occurrence, ��x�, and the corresponding
value of the jumps, x.

In what follows we will discuss two families of processes
driven by different forms of ��x� with constant positive
drift—i.e., f�x�=k with k
0.

A. Power-law dependence of � on x

In many physical systems the probability of having a fire
increases with the value of the state variable. Examples of
such a behavior are represented by natural fires in ecosys-
tems, the frequency of which depends on the amount of veg-
etation biomass �9�, and neuron models, where fires are re-
leased when the voltage reaches or is around a certain
threshold �17,18�.

We will assume that ��x� is represented by a power law
k1x� ��
0�, so that the probability of having a fire either
remains constant �when �=0� or increases as x grows. Given
the constant drift, � depends on time as �=k1�k	+x0��, as
follows from Eq. �1�. As a result, the system has positive
aging �10�; i.e., the longer the time passed after a fire, the
more likely is immediate firing. Moreover, because of this
particular form of �, �F�x , t��=k1�x�+1�, and the ��+1�th mo-
ment of x can be evaluated directly from Eq. �1� as the ratio
k /k1.

The steady-state PDF of x and the PDF of the time be-
tween fires are �see Eqs. �13� and �10��

p�x� =
A

k
exp�−

k1

k

x�+1

� + 1
� , �16�

p	�	� = k1�k	�� exp�−
k1

k

�k	��+1

� + 1
� , �17�

where A is a normalization constant. Equation �17� can also
be obtained from Eq. �6�. In fact, in this case, p��x ,	� reads

p� = ��x − k	 − x0�exp�−
k1

k�� + 1�
�x�+1 − x0

�+1�� , �18�

and from Eq. �6� one obtains

p	�	� = k1�x0 + k	��exp
−
k1

k�� + 1�
��x0 + k	��+1 − x0

�+1�� ,

�19�

which represents the probability of the time of first-fire oc-
currence starting from x�0�=x0. When x0=0, Eq. �19� is the
PDF of interfire times and, in fact, becomes equal to Eq.
�17�.

Figure 3 shows some distributions of both x and 	 for
different values of the parameter �. When �=0, the fre-
quency of the jumps is constant �equal to 1/k1� and both
distributions are exponential. In general, for �
0, p	�	� is a
power-exponential distribution �26�. When k1=k��+1�, p	�	�
is a Weibull distribution, which is one of the asymptotic dis-
tributions of general extreme value theory and is commonly
used for the statistics of lifetime of objects �27�. The Weibull
distribution has also been adopted in the analysis of natural
fire occurrence in ecosystems �21�.

Interestingly, when � tends to +�, ��x�→��x−1�, p	�	�
=��	−1/k�, and p�x� becomes a uniform distribution be-
tween 0 and 1. In this particular situation the process be-
comes totally deterministic, with x�t� linearly increasing up
to x=1 and reset to x=0 thereafter.

FIG. 2. Example of time series of x �left� in the case of constant drift, k=0.1, and ��x�=0.4x3. The steady-state PDF of x �solid line� and
the PDF of the values of x at which a fire occurs �dashed line� are shown in the middle graph, while examples of PDF’s of the times of
first-fire occurrence for different values of x0 and the interfire time PDF �i.e., x0=0� are shown on the right.
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The previous results are also valid for −1���0, in
which case the ageing is negative �i.e., the more the system
lasts without a fire, the less likely is immediate fire occur-
rence�. For these values of �, p	�	� becomes a stretched ex-
ponential �26�.

B. Hyperbolic dependence of � on x

In this second example ��x� will be assumed to have the
form

��x� =
a + bx

c − dx
, �20�

where a, b, and c are positive parameters, while d is a con-
stant that might also be negative. This choice of the param-
eters allows p�x� to be normalized �i.e., �0

+�p�x�dx=1� and
therefore the system can reach a stationary state. After Eqs.
�13� and �10�, the steady distribution of x and the PDF of the
fire occurrences are

p�x� =
A

k
exp�bx

dk
�	c − dx	�ad+bc�/d2k,

p	�	� =
a + bk	

c − dk	
exp�b	

d
�
1 −

dk	

c

�ad+bc�/d2k

, �21�

with A the normalization constant.
Depending on the sign of d, either the value of x or that of

� is bounded.
When d
0, � has a vertical asymptote in x=c /d, there is

positive aging, and the fire frequency tends to +� as x ap-
proaches c /d. If the initial value of x is comprised between 0
and c /d, the process remains in that interval of values. Fig-
ure 4 shows the stationary PDF of x and p	�	� for different b
in the case of a=0, which implies that the aging function is 0
in x=0 and increases up to � as x approaches c /d. Accord-
ingly, the interarrival time between two fires is also bounded
at 	=c / �kd�. As b increases, the PDF of x moves towards
zero, because the jumps are on average more frequent. For
b=0 and a�0 �not shown�, the PDF of x becomes a power
law in the interval 0�x�c /d, while p	�	� is a generalized
Pareto distribution bounded between 0 and c / �kd� �27�.

When d�0, the process can assume any value of the
positive x axis, but � has an horizontal asymptote, which can
be attained from above �i.e., negative aging� or below �i.e.,
positive aging� depending on whether a /c is higher or lower
than −b /d, respectively. Consequently, the probability that a
fire is released tends to a constant value when x is far from

FIG. 3. Steady-state distributions of x and 	 in the case of constant drift k and �=k1x�, with � varying between 0 and 4 with step of 1.
The other two parameters are k=1 and k1=0.1.

FIG. 4. Steady-state distributions of x and 	 in the case of �= �a+bx� / �c−dx� when x is upper bounded �a=0, c=1, d=1, k=0.5, and b
varies from 1 to 21 with steps of 5�.
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the origin. In particular, when a /c=−b /d, � is constant and
p�x� and p	�	� are exponential distributions. It is interesting
to note that, for b�0, the PDF’s of Eq. �21� are power ex-
ponentials, while, when b=0, they become generalized
Pareto distributions, as shown in Fig. 5 �in such a case the
condition 	a / �dk� 	 
1 must hold to guarantee the decay to
zero of p�x� when x→��. The origin of power-law tails is
due to the contrasting action of the fires that bring the system
to zero and the drift, which repels the system from the origin
�25,26�. Power laws have been recently found in timing of
human actions �28–30�, for which the present approach of
state-dependent Poisson processes might provide a simple
mathematical description.

IV. PROCESSES WITH DIFFUSION

In many cases, random external fluctuations affect the dy-
namics during interfire periods. These effects are commonly
represented by either additive or multiplicative Gaussian
white noise, through a suitable choice of the function g�x� in
Eq. �1�. Numerous examples of these types of models can be
found in the literature, such as the already mentioned leaky
integrate-and-fire model in neurobiology �14,15� or the sto-
chastic logistic equation in population biology �3�. In the
case of natural fires in ecosystems, the growth of vegetation
biomass has unpredictable components due to hydroclimatic
variability �25�, which might be modeled as a Gaussian
noise.

In the following we analyze three examples of fire models
with Gaussian noise for which analytical solutions can be
obtained.

A. Absorbing barrier

A special limiting case of this type of processes can be
found in the theory of the first-passage time through an ab-
sorbing barrier at a constant value, x=a. This is equivalent to
assuming that the state-dependent frequency of fires is ��x�
=��x−a�, so that the system evolves following its trajectory
until it reaches the value x=a, at which a renewal event
occurs. Clearly, the intertime distribution of the fire occur-

rences is equal to the PDF of the first-passage time through
an adsorbing barrier in x=a �5,14,23� and Eq. �5� coincides
with the first-passage time through x=a.

An example of these type of processes was used in �14� to
describe neuronal activity. In this model, the voltage across a
nerve membrane, x, is assumed to evolve according to a
Wiener process and to be reinitialized by means of a fire
every time the voltage reaches the threshold value x=a. The
resulting PDF of fire occurrences is the well-known inverse
Gaussian distribution with power-law decay, t−3/2 �14,23�.

B. Additive noise

In this subsection we study processes with no drift �i.e.,
f�x�=0� forced by additive Gaussian noise �i.e., g�x�=1� and
fires occurring with frequency ��x�=k1x2. The process is
thus a random walk between fires, the occurrence of which
becomes more probable as x�t� moves far from the origin.

Solving Eq. �2� under steady-state conditions, it is pos-
sible to show that the system reaches a steady state in which
the PDF of x is �31�

p�x� =
�k1/�2�3/8

2�2���5/4�
�	x	K1/4��k1x2

2��2 � , �22�

where ��·� is the gamma function and Kn�·� is the modified
Bessel function of the second kind �32�. The PDF of x de-
cays exponentially for 	x 	 → +� and becomes more concen-
trated around x=0 as k1 increases, while it tends to be more
spread out for high values of �2.

To study the interfire statistics we adopt Eq. �3�, which
reads, in this case,

�

�	
p��x,	� = �2 �2

�x2 p��x,	� − k1x2p��x,	� , �23�

with initial condition p��x ,0�=��x−x0�. The solution of Eq.
�23� can be written as �33�

p��x,	� =
N�x,	�
D�x,	�

, �24�

where

FIG. 5. Time series and corresponding power-law tail PDF of x in the case of �= �a+bx� / �c−dx� when x is unbounded, but � is limited
�a=0.2, b=0, c=1, d=−1/4, and k=0.5�.
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N�x,	� = exp
��2k1	 +
1

2
� k1

�2 �x2 − x0
2�

+� k1

�2

�x exp�2��2k1	� − x0�2

1 − exp�4��2k1	�
� �25�

and

D�x,	� = �����2

k1
�exp�4��2k1	� − 1� . �26�

The PDF of the fire occurrences can be found inserting Eq.
�24� into Eq. �4� and then substituting in Eq. �5�. When x0
�0, p	�	 ,x0� cannot be obtained exactly, while for x0=0 it
reads

p	�	� =
�2�2k1exp���2k1	�

�exp�4��2k1	� − 1�coth�2��2k1	��3/2
. �27�

It is interesting to note that the PDF of the times between
fires depends exclusively on the product �2k1, since the in-
tensity of the two random terms �i.e., diffusion and jumps
due to fires� affects in the same way the system. In fact, high

values of k1 increase the probability of having a renewal
event and, analogously, a large �2 tends to move the system
far from the origin, leading to a higher probability of fire.

Figure 6 shows some PDF’s of the times of first-fire oc-
currence for different values of x0. Apart from that corre-
sponding to x0=0, the other curves are obtained by numeri-
cal integration of Eq. �24� with respect to x. Given the
dependence of � on x2, it is apparent that higher values of the
initial state lead to higher probability to have fires in short
times.

Figure 7�a� shows different p��x , t� at different times t
with initial condition x0=1. The PDF starts from a Dirac � at
	=0 and then spreads out and moves towards the origin be-
cause of the effect of both k1 and �. As 	 increases, the area
of p� decreases, going to zero when 	→ +�. Figure 7�b�
shows different distributions of times between fires �in this
case x0=0�. It is clear that increasing the product �2k1 in-
duces more frequent fires.

Since in this case there is not a one-to-one relation be-
tween x and 	, the function �(x�	�) cannot be written explic-
itly as a function of time. However, we can find an equiva-

lent age-specific failure rate, �̃�	�, using the relation �̃�	�
= p	�	� /F�	� �10�. According to Eq. �27�, one obtains

�̃�	� = �k1�2 tanh�2�k1�2	� , �28�

showing that the system has positive aging and its age-
specific failure rate grows from zero for 	=0 to �k1�2 when
	→ +� �Fig. 8�. Therefore, as the time from the last fire
increases, the renewal process behaves as a Poisson process.

C. Multiplicative noise

In this subsection we study systems with g�x�=�x, ��x�
=k1x and with no drift �i.e., f�x�=0�. For these processes x�t�
is always positive and, as x�t� moves closer to the origin, the
strength of the Gaussian noise and the frequency of fires are
reduced. Moreover, after a fire the system jumps to x�t�=0
and remains there, because of the form of g�x� and ��x�,
which are both zero in the origin. Thus only one fire can
occur. As will be discussed more in detail in the following, it
is also possible that the system reaches the state x�t�=0 be-
fore a fire takes place �6,7�. In such a case no fire will occur,

FIG. 6. Examples of PDF’s of the times of first-fire occurrence
for different values of x0 and the interfire time PDF �i.e., x0=0,
thick line� for a process driven by additive Gaussian white noise
between fires occurring at a rate �=k1x2 �Sec. IV B�. Parameters are
�2=1 and k1=1.

FIG. 7. Probability distributions of a process driven by additive Gaussian noise and fires with �=k1x2 �Sec. IV B�. �a� p��x , t� at different
times t, starting from x0=1 at t=0 to t=2.5 with �2=0.5 and k1=1. �b� Probability distribution of the times between fires �x0=0� for different
values of �2k1.

STATE-DEPENDENT FIRE MODELS AND RELATED… PHYSICAL REVIEW E 74, 041112 �2006�

041112-7



since the system remains at zero after it reaches that state.
The PDF of the times of first-fire occurrence can be ob-

tained from the solution of Eq. �3�. According to the chosen
forms of g�x� and ��x�, Eq. �3� reads

�

�	
p��x,	� = �2 �2

�x2 �xp��x,	�� − k1xp��x,	� , �29�

with initial condition p��x ,0�=��x−x0� �x0�0�. Laplace-
transforming Eq. �29� yields

�

�	
p�

*�u,	� + ��2u2 − k1�
�

�u
p�

*�u,	� = 0, �30�

the solution of which can be obtained with the method of the
characteristics �5,34� as

p�
*�u,	� = exp
−

x0
�k1

��2
tanh��k1�2	 + tanh−1�u��2/k1��� .

�31�

According to Eq. �7�, the survivor function is

F�	� = exp�−
x0

�k1

��2
tanh��k1�2	�� , �32�

which is a function decreasing from 1 at 	=0 to
exp�−x0

�k1 /�2� when 	 tends to +�. The finite value at-
tained by F�	� for large 	 accounts for those cases when the
system reaches the state x�t�=0 before a fire is released and
gives the probability of having no fires. As �→0, F�	� goes
to zero for large 	. In fact, for �→0, x�t� tends to linger
around the initial value x0 and the distribution of the interfire

times tends to an exponential with average k1x0, since the
process becomes equivalent to a Poisson process with con-
stant frequency of fire occurrence equal to k1x0.

According to the survivor function �e.g., Eq. �4��, the PDF
of the interfire times reads

p	�	� = x0k1�sech��k1�2	��2 exp�−
x0

�k1

��2
tanh��k1�2	�� ,

�33�

the area of which is 1−exp�−x0
�k1 /�2�, because of a mass

equal to exp�−x0
�k1 /�2� that accounts for the probability of

having no fire.
Also in this case it is possible to evaluate an equivalent

age-specific failure rate as �̃�	�= p	�	� /F�	�, which accord-
ing to Eqs. �32� and �33� reads

�̃�	� = x0k1�sech��k1�2	��2, �34�

which shows that the system has a negative aging, since the
frequency that the fire occurs diminishes in time �Fig. 8�.

V. CONCLUSIONS

We have presented a study about the statistical dynamics
of processes driven by fires with state-dependent rate of oc-
currence, which reinitialize the system to zero. The links
between the fire occurrence and the dynamics of these state-
dependent renewal processes are formally derived for differ-
ent processes.

Probability distributions of the state variable x�t� and fire
occurrences are obtained exactly for general forms of drifts
f�x� and age-specific failure rates ��x�. Power-law tail distri-
butions of the state variable and interfire times are analyzed
in detail for processes with constant drift coupled to fires
with frequency ��x��1/ �a+x� �a
0� �see Fig. 4�. A few
applications to processes driven by Gaussian noise for which
exact results can be obtained are also shown. In particular,
two processes with opposite aging are studied. The first pro-
cess, driven by additive Gaussian noise with intensity �2

between fire events that occur with state-dependent mean
rate ��x�=k1x2, presents positive aging depending on the
product k1�2 �see Eq. �27��. As shown in Fig. 8, the fre-
quency of fire occurrence increases in time and reaches a
constant value, so that the process tends to behave as a Pois-
son process when 	 is large. The dynamics of the second
process is driven by the action of Gaussian white noise with
strength �2 modulated by the function g�x�=�x and fires
occurring at a mean rate ��x�=k1x2. Such a process has nega-

tive aging; i.e., �̃ decreases with 	 �Fig. 8�, since once the
process reaches values close to zero it tends to remain there
�because of the multiplicative nature of the Gaussian noise�
with a reduction in the probability of fire occurrence.

FIG. 8. Aging functions �̃�	� for the two processes studied in
the Secs. IV B �thick lines, corresponding to positive aging� and
IV C �thin lines, corresponding to negative aging�. Solid lines have
k1=1 and dashed lines k1=2. Other parameters are x0=1 and
�2=1.
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